Flytende gjennomsnitt Dette eksemplet lærer deg hvordan du beregner det bevegelige gjennomsnittet av en tidsserie i Excel. Et glidende gjennomsnitt brukes til å utjevne uregelmessigheter (topper og daler) for enkelt å gjenkjenne trender. 1. Først, ta en titt på vår tidsserie. 2. På Data-fanen klikker du Dataanalyse. Merk: kan ikke finne dataanalyseknappen Klikk her for å laste inn add-in for Analysis ToolPak. 3. Velg Flytt gjennomsnitt og klikk OK. 4. Klikk i feltet Inngangsområde og velg området B2: M2. 5. Klikk i intervallboksen og skriv inn 6. 6. Klikk i feltet Utmatingsområde og velg celle B3. 8. Skriv en graf av disse verdiene. Forklaring: fordi vi angir intervallet til 6, er glidende gjennomsnitt gjennomsnittet for de forrige 5 datapunktene og det nåværende datapunktet. Som et resultat blir tinder og daler utjevnet. Grafen viser en økende trend. Excel kan ikke beregne det bevegelige gjennomsnittet for de første 5 datapunktene fordi det ikke er nok tidligere datapunkter. 9. Gjenta trinn 2 til 8 for intervall 2 og intervall 4. Konklusjon: Jo større intervallet jo flere tinder og daler utjevnes. Jo mindre intervallet, desto nærmere er de bevegelige gjennomsnittene til de faktiske datapunktene. Hva er et bevegelige gjennomsnitt? Det første glidende gjennomsnittet er 4310, som er verdien av den første observasjonen. (I tidsserieanalyse beregnes det første tallet i den bevegelige gjennomsnittsserien ikke, det er en manglende verdi.) Neste glidende gjennomsnitt er gjennomsnittet av de to første observasjonene (4310 4400) 2 4355. Det tredje glidende gjennomsnittet er gjennomsnittlig observasjon 2 og 3, (4400 4000) 2 4200, og så videre. Hvis du vil bruke et glidende gjennomsnitt på lengde 3, blir tre verdier i gjennomsnitt i stedet for to. Opphavsrett 2016 Minitab Inc. Alle rettigheter reservert. Ved å bruke dette nettstedet godtar du bruk av informasjonskapsler for analyse og tilpasset innhold. Les vår policySammenhengende data fjerner tilfeldig variasjon og viser trender og sykliske komponenter. Inherent i samlingen av data tatt over tid er noen form for tilfeldig variasjon. Det finnes metoder for å redusere avbryte effekten på grunn av tilfeldig variasjon. En ofte brukt teknikk i industrien er utjevning. Denne teknikken, når den brukes riktig, viser tydeligere den underliggende trenden, sesongmessige og sykliske komponenter. Det er to forskjellige grupper av utjevningsmetoder. Midlere metoder Eksponensielle utjevningsmetoder Gjennomsnitt er den enkleste måten å glatte data på. Vi vil først undersøke noen gjennomsnittsmetoder, for eksempel det enkle gjennomsnittet av alle tidligere data. En leder av et lager ønsker å vite hvor mye en typisk leverandør leverer i 1000 dollar-enheter. Heshe tar et utvalg av 12 leverandører, tilfeldig, og oppnår følgende resultater: Beregnet gjennomsnitt eller gjennomsnitt av dataene 10. Lederen bestemmer seg for å bruke dette som estimat for utgifter til en typisk leverandør. Er dette et bra eller dårlig estimat Mean squared feil er en måte å dømme hvor bra en modell er. Vi skal beregne den gjennomsnittlige kvadratfeilen. Feil sant beløp brukt minus estimert beløp. Feilen squared er feilen ovenfor, firkantet. SSE er summen av kvadratfeilene. MSE er gjennomsnittet av de kvadratiske feilene. MSE-resultater for eksempel Resultatene er: Feil og kvadratfeil Estimatet 10 Spørsmålet oppstår: kan vi bruke gjennomsnittet til å prognostisere inntekt hvis vi mistenker en trend. En titt på grafen nedenfor viser tydelig at vi ikke bør gjøre dette. Gjennomsnittlig veier alle tidligere observasjoner likt Sammendrag oppgir vi at Det enkle gjennomsnittet eller gjennomsnittet av alle tidligere observasjoner er bare et nyttig estimat for prognoser når det ikke er noen trender. Hvis det er trender, bruk ulike estimater som tar hensyn til trenden. Gjennomsnittet veier alle tidligere observasjoner likt. For eksempel er gjennomsnittet av verdiene 3, 4, 5 4. Vi vet selvsagt at et gjennomsnitt beregnes ved å legge til alle verdiene og dividere summen med antall verdier. En annen måte å beregne gjennomsnittet på er å legge til hver verdi dividert med antall verdier, eller 33 43 53 1 1.3333 1.6667 4. Multiplikatoren 13 kalles vekten. Generelt: bar frac sum venstre (frac høyre) x1 venstre (frac høyre) x2,. ,, venstre (frac høyre) xn. Den (venstre (frac høyre)) er vektene, og selvfølgelig summen de til 1.
No comments:
Post a Comment